99.5k views
21 votes
What is the answer to this solution. -7r−4≥ 4r+2

User Jabbar
by
8.9k points

1 Answer

12 votes

Answer:

The solution is:


-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-(6)/(11)\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-(6)/(11)]\end{bmatrix}

Please check the attached line graph below.

Explanation:

Given the expression


-7r-4\ge \:4r+2

Add 4 to both sides


-7r-4+4\ge \:4r+2+4

Simplify


-7r\ge \:4r+6

Subtract 4r from both sides


-7r-4r\ge \:4r+6-4r

Simplify


-11r\ge \:6

Multiply both sides by -1 (reverses the inequality)


\left(-11r\right)\left(-1\right)\le \:6\left(-1\right)

Simplify


11r\le \:-6

Divide both sides by 11


(11r)/(11)\le (-6)/(11)

Simplify


r\le \:-(6)/(11)

Therefore, the solution is:


-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-(6)/(11)\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-(6)/(11)]\end{bmatrix}

Please check the attached line graph below.

What is the answer to this solution. -7r−4≥ 4r+2-example-1
User Zumm
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories