99.5k views
21 votes
What is the answer to this solution. -7r−4≥ 4r+2

User Jabbar
by
6.5k points

1 Answer

12 votes

Answer:

The solution is:


-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-(6)/(11)\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-(6)/(11)]\end{bmatrix}

Please check the attached line graph below.

Explanation:

Given the expression


-7r-4\ge \:4r+2

Add 4 to both sides


-7r-4+4\ge \:4r+2+4

Simplify


-7r\ge \:4r+6

Subtract 4r from both sides


-7r-4r\ge \:4r+6-4r

Simplify


-11r\ge \:6

Multiply both sides by -1 (reverses the inequality)


\left(-11r\right)\left(-1\right)\le \:6\left(-1\right)

Simplify


11r\le \:-6

Divide both sides by 11


(11r)/(11)\le (-6)/(11)

Simplify


r\le \:-(6)/(11)

Therefore, the solution is:


-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-(6)/(11)\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-(6)/(11)]\end{bmatrix}

Please check the attached line graph below.

What is the answer to this solution. -7r−4≥ 4r+2-example-1
User Zumm
by
5.8k points