To solve this exercise we need the concept of Kinetic Energy and its respective change: Initial and final kinetic energy.
Let's start considering that the angular velocity is given by,
![\omega = (v)/(R)](https://img.qammunity.org/2020/formulas/physics/middle-school/drcjprlj3njggq47mctd9eyck084zswor7.png)
Where,
V = linear speed
R = the radius
In the case of the initial kinetic energy:
![KE_i=(1)/(2) mv^2 + (1)/(2)I \omega^2](https://img.qammunity.org/2020/formulas/physics/college/smaehajt3qy6sc0jhd8iz0o3jpdyfnmxw1.png)
Where I is the moment of inertia previously defined.
![KE_i = (1)/(2)(m)3.5^2 + (1)/(2)* ((2)/(5) m R^2) ((3.5)/(R))^2](https://img.qammunity.org/2020/formulas/physics/college/fx1wpk5ptbtawmz5d3n1eii4a8wua0ee04.png)
In the case of the final kinetic energy, we have to,
![KE_f= mgh+ (1)/(2) mv^2 + (1)/(2) I \omega^2](https://img.qammunity.org/2020/formulas/physics/college/3rfw31k2wbbs919cxu5h4lcdsfm15m90uq.png)
![KE_f = m * 9.81 * 0.76 + (1)/(2) m v^2 + (1)/(2) ((2)/(5) m R^2) ((v)/(R))^2](https://img.qammunity.org/2020/formulas/physics/college/g8a62mon2gznxvtr2ya9snbifx9gomoeze.png)
For conservation of Energy we have, that
, then (canceling the mass and the radius)
![(1)/(2) 3.5^2 + (1)/(2)((2)/(5))(3.5)^2= 9.81 * 0.76 + (1)/(2) v^2 + (1)/(2) ((2)/(5)) (v)^2](https://img.qammunity.org/2020/formulas/physics/college/2w06lpu38v96xz62bqjijp9tptkk2b6aos.png)
![8.575= 7.4556+ (1)/(2) v^2 + (1)/(2) ((2)/(5)) (v)^2](https://img.qammunity.org/2020/formulas/physics/college/lsjkepuki3waaf9kxlihhno8zqkvhr9uqp.png)
![1.1194= (1)/(2)( v^2 + ((2)/(5)) (v)^2)](https://img.qammunity.org/2020/formulas/physics/college/1nasixvz4k2d9gbi89qqst9vmz2evxj4ot.png)
![2.2388= ((7)/(5)) (v)^2](https://img.qammunity.org/2020/formulas/physics/college/8o5k2b0nv5x88dg66m62c51jjc4ajf2y0l.png)
![v=1.26m/s](https://img.qammunity.org/2020/formulas/physics/college/g2warx7d6zmi7g8slzh83zhbnivct5vsym.png)