193k views
24 votes
Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express your answer in terms of the parameters t and/or s.) x1 2x2 8x3

User RolfBly
by
4.7k points

1 Answer

6 votes

Answer:

Infinitely solution exists,

Required solution is,
(x_1,x_2,x_3)=(0, 4(1-t),t)

Explanation:

We have the given equations:


x_1+2x_2+8x_3=8


x_1+x_2+4x_3=4

Here, the augmented matrix is :


\left[\begin{matrix}1&2&8&8\\1&1&4&4\end{matrix}\right]

Now, find the echelon form of the augmented matrix.


=\left[\begin{matrix}1&2&8&8\\0&-1&-4&-4\end{matrix}\right]^(R_1\rightarrow R_2-R_1)


=\left[\begin{matrix}1&0&0&0\\0&-1&-4&-4\end{matrix}\right]^(R_1\rightarrow R_1+2R_2)

Therefore,
x_1=0


-x_2-4x_3=-4


\Rightarrow x_2=4(1-x_3)

Let
x_3=t, then the required solution is


(x_1,x_2,x_3)=(0, 4(1-t),t)

User Sameer Kulkarni
by
5.6k points