Answer:13.05 %
Explanation:
Given
mean
![\mu =9.4 lb](https://img.qammunity.org/2020/formulas/mathematics/high-school/pey7qaog98c9bspdgw2zzjovrd29jdrir8.png)
standard deviation
![\sigma =4.2 lb](https://img.qammunity.org/2020/formulas/mathematics/high-school/nvy1vshj1brwsi3t4wm68y64bur5vxkjtc.png)
Let X be the amount of paper discarded from households per week normally distributed
we need to find
![P(X> 8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vtrmwa55h0i6flj0zgl8odu8aau2gu1cva.png)
suppose
![z=(X-9.4)/(4.2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sxmuwkk3cnay3hrlakmkqp7hxw5kkjfrv7.png)
![P(X>8)=P((X-9.4)/(4.2)>(8-9.4)/(4.2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/m1syrqrati8xri6n7fc1agcmnzld68ghs2.png)
![=P(z> -0.333)](https://img.qammunity.org/2020/formulas/mathematics/high-school/juewbkit6mxupjf9a5y7fgjg14tdhkvp76.png)
Since standard normal is perfectly symmetric about the mean
therefore
![P(z > -0.33)=P(z < 0.33)](https://img.qammunity.org/2020/formulas/mathematics/high-school/feixceykdvw1bpgdbveon8eucohmk7y7ka.png)
For Normal distribution
![P(a\leq z\leq b)=P\left ( a\leq z\leq b\right )=(1)/(√(2\pi ))\int_(a)^(b)e^{(z^2)/(2)}dz](https://img.qammunity.org/2020/formulas/mathematics/high-school/v1mrdian8bpy1g2wloaf0ks9eje2fgzrzg.png)
![P(z<0.33)=(1)/(√(2\pi ))\int_(0)^(3)e^{(z^2)/(2)}dz](https://img.qammunity.org/2020/formulas/mathematics/high-school/1by33vmccnecgubx3bpzbwqpsgewo0f2qh.png)
![P(z<0.33)=(0.1636√(2))/(√(\pi ))](https://img.qammunity.org/2020/formulas/mathematics/high-school/zo8zojvs0ckhvx2zopa6j55wys7grk6kmj.png)
![P(z<0.33)=0.13054](https://img.qammunity.org/2020/formulas/mathematics/high-school/d4fyuxm51uocohx660dcldfmn8mx8vnsd4.png)
Thus
![P(z> -0.33)=0.13054](https://img.qammunity.org/2020/formulas/mathematics/high-school/c7n2mn151tstwli79jbdecyil47nob4gkf.png)
Therefore 13.05 % of households throw out at least 8 lb of paper a week