80.0k views
0 votes
Help with homework question

Help with homework question-example-1
User TheWebGuy
by
7.9k points

1 Answer

1 vote

Answer:

The solution set is { 66.6°, 113.4°, 192.6°, 347.4° }.

Explanation:

Given:

The given equation in the interval (0°,360°) is given as:


10\sin ^(2)\theta - 7\sin \theta=2

Adding -2 both sides, we get


10\sin ^(2)\theta - 7\sin \theta-2=2-2\\10\sin ^(2)\theta - 7\sin \theta-2=0

This is a quadratic equation in
\sin \theta of the form
ax^2+bx+c=0.
Solve it using the quadratic formula given as:


\sin \theta=\frac{-b\pm \sqrt{b^(2)-4ac}}{2a}

Here,
a=10,b=-7,c=-2

Therefore,


\sin \theta=\frac{-(-7)\pm \sqrt{(-7)^(2)-4(10)(-2)}}{2(-2)}\\\sin \theta=0.918\textrm{ or }\sin \theta = -0.218

Now, taking inverse of the sine values, we get


\theta=\sin^(-1)(0.918)\textrm{ or }\theta=\sin^(-1)(-0.218)\\\theta=66.6\textrm{ or }\theta=-12.59

But, we need to find
\theta in the interval (0°,360°).


\textrm{For interval (0,180)}\\\sin\theta=sin(180-\theta)\\\\\textrm{For interval (180,270)}\\\sin\theta=sin(180+\theta)\\\\\textrm{For interval (180,360)}\\\sin\theta=sin(360-\theta)


\theta=-12.59 is in the fourth quadrant, So, its positive value is:


360-12.59=347.41°

Also, from unit circle, sine of the angle in third and fourth quadrants are same. So,


12.59=180+12.59=192.59°


66.6=180-66.6=113.4°

Therefore, the set of angles for which the above equation is satisfied in the interval (0°,360°) is { 66.6°, 113.4°, 192.6°, 347.4° }.

User Jack M
by
6.9k points