Answer:
Option 1 - Down on the left down on the right
Explanation:
Given : Function
![f(x)=-3x^(4)+7x^(2)-12x+13](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8vbt74ti1fm8vcmnm4o8trcr1hbzay8ux5.png)
To find : Without using technology, describe the end behavior of f(x) ?
Solution :
Without technology we apply characteristics of Power and Polynomial Functions
As in function
![f(x)=-3x^(4)+7x^(2)-12x+13](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8vbt74ti1fm8vcmnm4o8trcr1hbzay8ux5.png)
The the end behavior of power functions of the form
where n is a non-negative integer depending on the power and the constant.
The leading term,
![f(x)=-3x^(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/riy3z0ip8tscuo95xfw4gjceeaeqgg5n0z.png)
Negative constant and even power.
So, At
![x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/8fwpfgzpbcyov83npo0di8kxm0xhb2q4p4.png)
![f(x)\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/college/gtr55qr0j8zyuv0sazratrqglh78utaaab.png)
At
![x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/eq7n7hnevr47kjld9mccahsi9nnph1lv7o.png)
![f(x)\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/college/gtr55qr0j8zyuv0sazratrqglh78utaaab.png)
i.e. the curve approaches down on the left and down on the right.
Therefore, option 1 is correct.