Answer:
![By\ 0.6\ seconds](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f2htvsogkbxtqv430r1pej6zki4zm0nyu9.png)
Explanation:
The missing equations are:
![Rachel: \\h=-16t^2+36t+160\\Amber: \\h=-16t^2+50t+160](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5zk5vea6dcp0oetn45afi4l1fth4j75nbx.png)
Make each equation equal to 0 and then apply the the Quadratic formula
![x=(-b\±√(b^2-4ac) )/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r0wks1tt1il7bxuwf9xudkzvhtrqrsa5it.png)
Time it takes Rachel's textbook to reach the ground (in seconds)
Having the equation:
We can identify that:
![a=-16\\b=36\\c=160](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ut7blr36rjasbcjgajxd1583k3xcpw1q9i.png)
Substituting values into the Quadratic formula, we get:
![x=(-36\±√((36)^2-4(-16)(160)) )/(2(-16))\\\\x_1=4.48\\\\x_2=-2.23](https://img.qammunity.org/2020/formulas/mathematics/middle-school/705nz6azsrv15gu4kxoimmy95lyl2kdpue.png)
Time it takes Amber's textbook to reach the ground (in seconds)
Having the equation:
We can identify that:
![a=-16\\b=50\\c=160](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yqqzyqarcnrcbdbjhlfy3tkp1ehimtjkf5.png)
Substituting values into the Quadratic formula, we get:
![x=(-50\±√((50)^2-4(-16)(160)) )/(2(-16))\\\\x_1=5.08\\\\x_2=-1.96](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c1rfjgw6ky2x9o4ngqh47753iacsqalai2.png)
The difference of the positive values is:
![5.08\ seconds-4.48\ seconds=0.6\ seconds](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vvd4owtf8eym3om0268wepiwweuucinc16.png)
Therefore, Rachel's textbook beat Amber's to the ground by
![0.6\ seconds](https://img.qammunity.org/2020/formulas/mathematics/middle-school/htzlkyemq06cj55u7tu9cqbxtksawepewt.png)