Answer:
![f(x)=(1)/(2)(6)^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wgebguwqrij6m4115l7sciijop7w2aufjn.png)
Explanation:
An exponential function is of the form
, where,
.
Now, if a > 0 and b > 1, then the exponential function represent exponential growth.
If a > 0 and 0 < b < 1, then the exponential function represent exponential decay.
Let us check each function now.
Option 1:
![f(x)=4(0.07)^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6hwgdmpo05rbk7ew4d90c8qzai68jvrn93.png)
Here,
![a=4,b=0.07](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ct40z0t1wgkhya7srgnkmij32lu92u3ev5.png)
As 0.07 < 1, the function is exponential decay.
Option 2:
![f(x)=2(0.44)^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x0rarmqry2qfh1ggqisu3mpyubredq36ic.png)
Here,
![a=2,b=0.44](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x9hxoakiem20hyf4lmdtv1cwtl2n61cauf.png)
As 0.44 < 1, the function is exponential decay.
Option 3:
![f(x)=(1)/(2)(6)^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wgebguwqrij6m4115l7sciijop7w2aufjn.png)
Here,
![a=(1)/(2),b=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvurnthze03cgvg3k0h5vgo4800cvsaqtk.png)
As 6 > 1, the function is exponential growth.
Option 4:
![f(x)=7((1)/(2))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mr3ruftfpg7d8mad8352ufurlekgunhvs4.png)
Here,
![a=7,b=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1mcsnwewufnszwn472swqao02dtqlbncq3.png)
As
, the function is exponential decay.
Therefore, the equation that represent exponential growth is
![f(x)=(1)/(2)(6)^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wgebguwqrij6m4115l7sciijop7w2aufjn.png)