Answer:
A.
min
Step-by-step explanation:
= mass of earth = 6.0 x 10²⁴ kg
= Radius of earth = 6400 km = 6.4 x 10⁶ m
= Altitude above earth = 400 km = 0.4 x 10⁶ m
Radius of orbit of the space station around earth is given as
![r = R + h](https://img.qammunity.org/2020/formulas/physics/college/teygj2ygxfts2afya4az6xz69t7flf6xjn.png)
![r = 6400 + 400](https://img.qammunity.org/2020/formulas/physics/college/ixhpa21stpl5xttvv81smq6wd4tdsvxm2n.png)
km
m
= Time period of orbit of space station
Here we can use Kepler's third law which is given as
![T^(2) = (4\pi ^(2) r^(3))/(GM)](https://img.qammunity.org/2020/formulas/physics/college/khfefouegdsyhwenldj8ivlijoa0gp3153.png)
Inserting the above values
![T^(2) = (4(3.14)^(2) (6.8*10^(6))^(3))/((6.67*10^(-11))(6.0*10^(24)))](https://img.qammunity.org/2020/formulas/physics/college/50hsf9b2wekgzb25z08i278koryky9nb8r.png)
![T^(2) = 3.1* 10^(7)](https://img.qammunity.org/2020/formulas/physics/college/f5gm6e7pzruonep5njhpdj1l7z223rmy13.png)
sec
![T = 5566.53 \left ( (1min)/(60sec) \right )= 93 min](https://img.qammunity.org/2020/formulas/physics/college/a4tztfgmum2zokf55fglulikp2zqwmb4q3.png)