Answer:
The selling price that will maximize profit is $56.
Explanation:
Given : It costs 12 dollars to manufacture and distribute a backpack. If the backpacks sell at x dollars each, the number sold, n, is given by
![n=(2)/(x-12)+7(100-x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bi1meajripmf7kd9n7yqysj1rs66qn3r2k.png)
To find : The selling price that will maximize profit ?
Solution :
The cost price is $12.
The selling price is $x
Profit = SP-CP
Profit = x-12
The profit of n number is given by,
![P=(x-12)n](https://img.qammunity.org/2020/formulas/mathematics/high-school/3lf9wx8kxcpxgxf1gxlzyw58j01pd4nxsm.png)
Substitute the value of n,
![P=(x-12)((2)/(x-12)+7(100-x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/y2oopfpzt180lv35z8ju0iozuijg0bby7r.png)
![P=(2(x-12))/(x-12)+7(100-x)(x-12)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v0c76ejgs93o02gmyg2krl0m2z3cx956b5.png)
![P=2+7(100x-1200-x^2+12x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/36xif8mizejqa6pi4ph7rutdkqyivsmuo9.png)
![P=2+700x-8400-7x^2+84x](https://img.qammunity.org/2020/formulas/mathematics/high-school/c4ffidnyjpth3upu8r081zf8r7cy05gt0x.png)
![P=-7x^2+784x-8398](https://img.qammunity.org/2020/formulas/mathematics/high-school/xljrlayt737jveu9746sihv3krirlu6jud.png)
Derivate w.r.t x,
![(dP)/(dx)=-14x+784](https://img.qammunity.org/2020/formulas/mathematics/high-school/68ifkbl41pbaveb24hw0vdd3itvqzghr7y.png)
Put it to zero for critical point,
![-14x+784=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/bc9v7kcogxcy1y3avccpmg8dtee3k1mu83.png)
![-14x=-784](https://img.qammunity.org/2020/formulas/mathematics/high-school/uiz0rweawgzyi7vg326bdpmckmemxdfkio.png)
![x=(-784)/(-14)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1nqzyurdgebnlftrntm88j9aldwojy06c1.png)
![x=56](https://img.qammunity.org/2020/formulas/mathematics/high-school/82ui6akqf42h7gepc02mlol6ozmx5brvuq.png)
Derivate again w.r.t x, to determine maxima and minima,
![(d^2P)/(dx^2)=-14<0](https://img.qammunity.org/2020/formulas/mathematics/high-school/qy7sznwy231ri4y614226qcankqednu942.png)
It is a maximum point.
Therefore, the selling price that will maximize profit is $56.