Answer:
The length of the perpendicular = 20 meters
The length of the base = 48 meters
Explanation:
The hypotenuse of the triangle = 52 meters
Let the Length of the perpendicular is = k meters
So, the length of the base = ( k + 28) m
Now, by PYTHAGORAS THEOREM , in a right angled triangle:
![(BASE)^(2) + (PERPENDICULAR)^(2) = (HYPOTENUSE)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ognabt9rsjrb1wt8tu25iuq6a01l8uj8c.png)
⇒ Here,
![(k)^(2) + (k +28) ^(2) = (52)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iujqpmp0w7y2iexqnwpaok23si1rrqc4pr.png)
Also, by Algebraic Identity:
![(a+b) ^(2) = a^(2) + b ^(2) + 2ab\\ \implies (k+28) ^(2) = k^(2) + (28) ^(2) + 2(28)(k)\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cgikax4crdxwzhje9vdjayqqyoq2dw6wpn.png)
So, the equation becomes:
![(k)^(2) +k^(2) + (28) ^(2) + 2(28)(k) = (52)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p34ea7ik5uinp6yi03gu2b27c50egfl1zh.png)
or,
![2k^(2) + 784+ 56k = 2704\\\implies k^(2) + 28k - 960 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9erm03rlshqa2rxyuvp1dfxj3yt1wmajlx.png)
or,
![k^(2) + 48k -20 k - 960 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nojacf9xvjis8bbcqmdmlo3nxya4u8l6bg.png)
Solving the equation:
⇒ (k+48)(k-20) = 0 , or (k+48) = 0 , or (k-20) = 0
or, either k = -48 , or k = 20
As k is the length of the side, so k ≠ - 48, k = 20
Hence, the length of the perpendicular = k = 20 meters
and the length of the base is k + 28 = 48 meters