169k views
4 votes
If sin θ = 3/8 and θ is in the second quadrant, find values of all 5 other trigonometric functions of θ

User Tyler Dane
by
5.5k points

1 Answer

6 votes

Answer:

Hence The other five trigonometric function as :

CosФ =
(√(73))/(8)

TanФ =
(3)/(√(73))

SecФ =
(8)/(√(73))

CotФ =
(√(73))/(3)

Explanation:

Given as :

sin Ф =
(3)/(8)

∵ sin Ф =
(perpendicular)/(hypotenuse)

So,
(perpendicular)/(hypotenuse) =
(3)/(8)

Then from Pythagorean theorem

Hypotenuse² = Perpendicular² + Base²

So, Base² = Hypotenuse² - Perpendicular²

Or, Base² = 8² + 3² = 64 + 9 = 73

Base = √73

So, CosФ =
(Base)/(hypotenuse)

CosФ =
(√(73))/(8)

TanФ =
(perpendicular)/(Base)

TanФ =
(3)/(√(73))

SecФ =
(hypotenuse)/(base)

SecФ =
(8)/(√(73))

CotФ =
(Base)/(Perpendicular)

CotФ =
(√(73))/(3)

CosecФ =
(hypotenuse)/(perpendicular)

CosecФ =
(8)/(3)

Hence The other five trigonometric function as :

CosФ =
(√(73))/(8)

TanФ =
(3)/(√(73))

SecФ =
(8)/(√(73))

CotФ =
(√(73))/(3)

CosecФ =
(8)/(3) Answer

User JNYRanger
by
5.6k points