Answer:
1.
![MO_2(s)+C(s)<-->CO_2(g)+M(s)](https://img.qammunity.org/2020/formulas/chemistry/college/yqocko6p25d1a2igf1ju1zy3t7scefq3ah.png)
2.
![K=3.57x10^(18)](https://img.qammunity.org/2020/formulas/chemistry/college/ygrtpckzuhepoy44j15v0xpm8y3tt5rnoz.png)
Step-by-step explanation:
Hello,
1.) By coupling the given reaction with the formation of carbon dioxide, one states the total reaction as:
![MO_2(s)<-->M(s)+O_2(g)\\C(s)+O_2(g)<-->CO_2(g)](https://img.qammunity.org/2020/formulas/chemistry/college/6r57g75wyb05pj7490z4lzxjizhfbgg1pf.png)
____________________________________
![MO_2(s)+C(s)<-->CO_2(g)+M(s)](https://img.qammunity.org/2020/formulas/chemistry/college/yqocko6p25d1a2igf1ju1zy3t7scefq3ah.png)
2.) Now, since we know that the Gibbs free energy for the decomposition of the metal is 288.5kJ/mol and the Gibbs free energy for the formation of carbon dioxide has a value of −394.39kJ/mol, the total Gibbs free energy for this process is:
Δ
![G^o=288.5kJ/mol-394.39kJ/mol=-105.89kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/fucrhev2zekvxpip8k49pbl7sfre91b7sc.png)
So the equilibrium constant is:
![K=exp(-(DeltaG^0)/(RT) )\\K=exp(-(-105890J/mol)/(8.314J/molK*298.15K) )\\K=3.57x10^(18)](https://img.qammunity.org/2020/formulas/chemistry/college/hcq9cy78jhysoqbek4rvto1viggudkse9f.png)
Best regards.