Answer:
The volume in such a package is 10,415.41 in³
Explanation:
Consider the provided information.
A parcel delivery service will deliver a package only if the length plus the girth (distance around, taken perpendicular to the length) does not exceed 104 inches.
Let the dimension are x by x by y.
Where x is the variable for the square base package and y is the variable for length.
Thus l=x, b=x and h=y
Then the volume of the box is:
(∵V=lbh)
The maximum combined length and girth is 104.
Therefore,
![4x+y=104](https://img.qammunity.org/2020/formulas/mathematics/college/k0mpd2a8oa66v46kzcywnmnag7xf5se5bo.png)
![y=104-4x](https://img.qammunity.org/2020/formulas/mathematics/college/67mbrq4gi4naccrj4vj0t52ez6ozefkh5a.png)
Substitute the value of y in volume of the box.
![V(x)=x^2(104-4x)](https://img.qammunity.org/2020/formulas/mathematics/college/bxw1avs74l5rw7rsluae041gcoh4yvw4e0.png)
![V(x)=104x^2-4x^3](https://img.qammunity.org/2020/formulas/mathematics/college/1oud16fcctraefdw0x9qolr21z76doijp3.png)
![V'(x)=208x-12x^2](https://img.qammunity.org/2020/formulas/mathematics/college/vj1a86gptyrm8s35kciawn17ynp24si04e.png)
Substitute V'(x)=0.
![0=208x-12x^2](https://img.qammunity.org/2020/formulas/mathematics/college/k9axlvjc135r55gj1pyc8w1vk7dw0zmnd7.png)
![-4x(3x-52)=0](https://img.qammunity.org/2020/formulas/mathematics/college/pzgydnrizv2ujiigebwn2ayz0ltp4hxouw.png)
![x=0\ or\ x=(52)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/gqt0xjdyksz39lw315sk0biebmpqnsamn9.png)
Now apply second derivative test.
![V''(x)=208-24x](https://img.qammunity.org/2020/formulas/mathematics/college/civsnql0hicpjg862ba2mpwj8sw1xdoqjw.png)
(Min)
(Max)
If x=52/3 then
![y=104-4((52)/(3))=(104)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ew6jiluuoknpdwohbqlbe6pk5bbpu9vrx5.png)
Substitute x = 52/3 and y = 104/3 in
![V(x)=x^2y](https://img.qammunity.org/2020/formulas/mathematics/college/66o2dofhagxzozo3cm4qez85swwj1ib8oi.png)
![V(x)=((52)/(3))^2* (104)/(3)=10,415.41](https://img.qammunity.org/2020/formulas/mathematics/college/a7djqxi83oa22708o386qw9r5c6in7yv89.png)
Hence, the volume in such a package is 10,415.41 in³