Answer:
r = 0.58
Explanation:
One formula for the correlation coefficient is
![r = \frac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{n\left [\sum{x}^(2)-\left (\sum{x}\right )^(2)\right]\left [\sum{y}^(2)-\left (\sum{y}\right )^(2)\right]}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/fauyqirew5c5uevgtklq7jghsl5jidxa3v.png)
The calculation is not difficult, but it is tedious.
1. Calculate the intermediate numbers
We can display them in a table.
x y xy x² y²
48.9 167.0 8 116.30 2 391.21 27 889.00
24.8 157.4 3 903.52 615.04 24 774.76
39.2 63.7 2 497.04 1 536.84 4 057.69
40.0 144.7 5 788.00 1 600.00 20 938.09
41.5 143.2 5 942.80 1 722.25 20 506.24
29.1 149.2 4 341.72 846.81 22 260.64
40.8 90.8 3 704.64 1 664.64 8 244.64
41.9 173.6 7 273.84 1 755.61 30 136.96
46.2 150.1 6 934.62 2 134.44 22 530.01
23.7 -51.7 -1 225.29 561.69 2 672.89
47.6 196.2 9 339.12 2 265.76 38 494.44
20.7 66.8 1 382.75 428.49 4 462.24
444.4 1451.0 58 049.07 17 522.58 226 967.60
2. Calculate the correlation coefficient
![r = \frac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^(2)-\left (\sum{x}\right )^(2)\right]\left [n\sum{y}^(2)-\left (\sum{y}\right )^(2)\right]}}\\\\= \frac{12* 58049.07 - 444.4* 1451.0}{\sqrt{[12* 17522.58 -{444.4}^(2)][12*226967.6 - 1451.0^(2)]}}\\\\= (696589 - 644824)/(√([210271 - 197491][2723611 - 2105401]))\\\\= (51764)/(√(12780*618210))\\\\= (51764)/(√(7900480000))\\\\= (51764)/(88885)\\\\= \mathbf{0.58}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c299l2plhdtp8dl2ohlk7o6vb3vtz60bsw.png)