Answer:
![b=20](https://img.qammunity.org/2020/formulas/mathematics/college/ss6us3hb1hgd35fkge40im11ur2kx51kkk.png)
Explanation:
Given:
The quadratic function is
![f(x)=-x^(2)+bx-75](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nfbqmoqedi80l75z4u9fdz52xfa4mo01ub.png)
The maximum value of the function is 25.
Comparing it with the standard form,
, we get
![a=-1,b=b,c=-75](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pvj1ap003wz1jxxl5cmsbz14saw36ey2ct.png)
Since,
is negative, we have a downward parabola with maximum value at the vertex.
The vertex of a quadratic function occurs at
![(h,k)=((-b)/(2a),f((-b)/(2a)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qt7nr6q4yae15qdtn5wx29esb8ijp9ogz0.png)
Now,
![h=(-b)/(2a)=(-b)/(-2)=(b)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zwg5psunobdbkwhjm30z355uwyulftbhi7.png)
As per question,
. This gives,
![f((b)/(2))=-((b)/(2))^(2)+b((b)/(2))-75\\25=-(b^(2))/(4)+(b^(2))/(2)-75\\25+75=(b^(2))/(4)\\100=(b^(2))/(4)\\b^(2)=100* 4\\b=√(400)=20](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wjsfebk6m0cb189869xrp4ba8gsq3v6aj9.png)
Therefore, the value of
is 20.