Answer:
See below
All the inequalities can be solved by making a table, but once they are simple factored quadratic expressions, we already know what interval it will have.
Explanation:
1)
![x^2+9x+14>0](https://img.qammunity.org/2022/formulas/mathematics/college/2kq367a4569m5yb74fh8ktnk0ittl7f0od.png)
Factoring the expression, we have
![(x+2)(x+7)>0](https://img.qammunity.org/2022/formulas/mathematics/college/gajt83v2mj690f50wx767mtzyha5lyb2rj.png)
Considering that
![(x+2)(x+7)=0](https://img.qammunity.org/2022/formulas/mathematics/college/68ptxmj25ha6hax8o43qsgj7xvbfulhltb.png)
for
and
you can see that for
![(x+2)(x+7)>0](https://img.qammunity.org/2022/formulas/mathematics/college/gajt83v2mj690f50wx767mtzyha5lyb2rj.png)
![x \\ot\in (-7, -2)](https://img.qammunity.org/2022/formulas/mathematics/college/y1pjo4vo41z4zc9hzsrbl2s7zzz8y5kgeb.png)
Therefore,
![S = \{x\in\mathbb{R} : x<-7 \text{ or } x>-2 \}](https://img.qammunity.org/2022/formulas/mathematics/college/61glqpm2kofckpenbkelankbi0lql6yrr9.png)
![S = (-\infty,-7)\cup (-2,\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/1s79uxznjltlgvjgb8inxjo6v9crhxcx4j.png)
2)
![x^2-10x+16<0](https://img.qammunity.org/2022/formulas/mathematics/college/zr6t3qmff3f4mgum20lqh2pprm74ywdyzi.png)
You can factor it again.
![(x-2)(x-8)<0](https://img.qammunity.org/2022/formulas/mathematics/college/o4e6p2e8un15hzcgxzkol208h4xwpnwki8.png)
You can make the table to solve all the inequalities, but once we have the expression
, we know that
, therefore,
![S = (2, 8)](https://img.qammunity.org/2022/formulas/mathematics/college/oau3bm1scowzw4clmpamqhrxk5ai9fgulz.png)
3)
![2x^2+11x+12<0](https://img.qammunity.org/2022/formulas/mathematics/college/mwalayxb11yb49yusoyzd9fvzmyr8tf3r9.png)
Factoring we have
![(2x+3)(x+4)<0](https://img.qammunity.org/2022/formulas/mathematics/college/q5nj5f128m4occclzqei6jh34kwkuas8du.png)
Find the solutions for
![(2x+3)(x+4)=0](https://img.qammunity.org/2022/formulas/mathematics/college/325k72jwc5ybg5bm7p7qs86nijymlmzep0.png)
And we know that
![-4<x<-(3)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/5yq7jferd6xlnk44vupgcdo4cdexohoibl.png)
![S = \left(-4,-(3)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/kri4elnhv2xhldn1vhjlkg23q8pqaeobl7.png)