Answer:
P = 1162 W
E = 33 476 923 Joules
Step-by-step explanation:
Hi, to calculate the total power hitting the panel we must integrate the power density P(x,y) inside the panel area, that is:
![P = \int\limits^(x=1)_(x=-1) \int \limits^(y=1-x^4)_(y-0) {P(x,y)}\, dxdy\\](https://img.qammunity.org/2020/formulas/physics/college/znbefzyt7tnefutb4nitt504d25o11kz17.png)
First we integrate the y variable since is the dependent variable for the present problem.
![P = 1000W\int\limits^(x=1)_(x=-1) {(y' - (y'^3)/(3))\limits^(y'=1-x^4)_(y'=0)} \, dx\\\\\\P= 1000W \int\limits^(x=1)_(x=-1) {(1-x^4 - ((1-x^4)^3)/(3))} \, dx](https://img.qammunity.org/2020/formulas/physics/college/ar78eg4o1nlau2en4r54g714er9avoe16g.png)
The integral is pretty straigthfoward, but involves expanding the binomial.
However the answer is:
![P = 1000W (1)/(3) ((x^(13) )/(13) - (x^(-9))/(3) +2x)\limits^(x=1)_(x=-1)\\\\P = 1000 (136)/(117) W](https://img.qammunity.org/2020/formulas/physics/college/sugtisld3qkrto7xxmwrq7pzhh0zcl502m.png)
That is:
P = 1162 W
Since 1W = 1J/1s
The total energy recieved in 8 hours will be:
E = P*(8*3600 s)
E = 33 476 923 Joules