Answer:
a) h = 9.2606 m
b) The rock will slide back down the hill
c) vf = 11.7638 m/s
Step-by-step explanation:
Given
m = 28 Kg
vi = 15 m/s
∅ = 40º
μs = 0.75
μk = 0.20
a) hmax = ?
Using The principle of conservation of energy we have
Wf = ΔE
where
Wf = - Ff*d = - (μk*N)*d = - μk*(m*g*Cos ∅)*(h / Sin ∅) (I)
Ff is the frictional force (μk*N) and d (h / Sin ∅) is the displacement
then
ΔE = Ef - Ei = (Kf + Uf) - (Ki + Ui) = (0 + Uf) - (Ki + 0) = Uf - Ki
Ui = 0 since hi = 0 and Kf = 0 since vf = 0
⇒ ΔE = Uf - Ki = m*g*h - 0.5*m*vi² = m*(g*h - 0.5*vi²) (II)
we can apply
Wf = ΔE ⇒ (I) = (II) ⇒ - μk*(m*g*Cos ∅)*(h / Sin ∅) = m*(g*h - 0.5*vi²)
⇒ h = (0.5*vi²*Sin ∅) / (g*(Sin ∅ + μk*Cos ∅))
⇒ h = (0.5*15²*Sin 40º) / (9.81*(Sin 40º + 0.20*Cos 40º))
⇒ h = 9.2606 m
b) In order to know if the rock will remain at rest at its highest point, or will it slide back down the hill we have to get Ffmax:
⇒ Ffmax = μs*N = μs*(m*g*Cos ∅) = 0.75*28*9.81*Cos 40º = 157.8128 N
and the component of the Weight along a direction down the hill
⇒ Wx' = W*Sin ∅ = m*g*Sin ∅ = 28*9.81*Sin 40º = 176.5609 N
since Ffmax < Wx' the rock will slide back down the hill
c) Given
m = 28 Kg
vi = 0 m/s
hi = 9.2606 m
hf = 0 m
∅ = 40º
μs = 0.75
μk = 0.20
vf = ?
Using The principle of conservation of energy we have
Wf = ΔE
where
Wf = - Ff*d = - (μk*N)*d = - μk*(m*g*Cos ∅)*(h / Sin ∅) (III)
then
ΔE = Ef - Ei = (Kf + Uf) - (Ki + Ui) = (Kf + 0) - (0 + Ui) = Kf - Ui
Uf = 0 since hf = 0 and Ki = 0 since vi = 0
⇒ ΔE = Kf - Ui = 0.5*m*vf² - m*g*h = m*(0.5*vf² - g*h) (IV)
we can apply
Wf = ΔE ⇒ (III) = (IV) ⇒ - μk*(m*g*Cos ∅)*(h / Sin ∅) = m*(0.5*vf² - g*h)
⇒ vf = √(2*g*h*(1 - μk*Ctg ∅))
⇒ vf = √(2*9.81*9.2606*(1 - 0.2*Ctg 40º))
⇒ vf = 11.7638 m/s