24.5k views
25 votes
Set A of six numbers has a standard deviation of 3 and set B of four numbers has a standard deviation of 5. Both sets of numbers have an equal mean. If the two sets of numbers are combined, find the variance.​

User PayToPwn
by
3.6k points

1 Answer

4 votes

Given:


\sigma_A=3


n_A=6


\sigma_B=5


n_B=4


\overline{x}_A=\overline{x}_B

To find:

The variance. of combined set.

Solution:

Formula for variance is


\sigma^2=\frac{\sum (x_i-\overline{x})^2}{n} ...(i)

Using (i), we get


\sigma_A^2=\frac{\sum (x_i-\overline{x}_A)^2}{n_A}


(3)^2=\frac{\sum (x_i-\overline{x}_A)^2}{6}


9=\frac{\sum (x_i-\overline{x}_A)^2}{6}


54=\sum (x_i-\overline{x}_A)^2

Similarly,


\sigma_B^2=\frac{\sum (x_i-\overline{x}_B)^2}{n_B}


(5)^2=\frac{\sum (x_i-\overline{x}_B)^2}{4}


25=\frac{\sum (x_i-\overline{x}_B)^2}{4}


100=\sum (x_i-\overline{x}_B)^2

Now, after combining both sets, we get


\sigma^2=\frac{\sum (x_i-\overline{x}_A)^2+\sum (x_i-\overline{x}_B)^2}{n_A+n_B}


\sigma^2=(54+100)/(6+4)


\sigma^2=(154)/(10)


\sigma^2=15.4

Therefore, the variance of combined set is 15.4.

User Chinmay Atrawalkar
by
3.5k points