Answer:
![\omega = 49.86*10^(-3)rad/s](https://img.qammunity.org/2020/formulas/physics/college/fagjlfbzg90hcjaxj0sb6oj9zeggbmem9g.png)
Step-by-step explanation:
We start converting to SI units,
A mile = 1609m
![L=17mi=27000m](https://img.qammunity.org/2020/formulas/physics/college/8vw69fowgpainqcsygqlafy937546wo3sg.png)
![D=4.99mi=7884m](https://img.qammunity.org/2020/formulas/physics/college/i3np9qy33wwzzqmmshvkv55yjp36ujs0vc.png)
We know that the expression, which can relate linear acceleration and angular velocity is given by,
![a_c = r\omega^2](https://img.qammunity.org/2020/formulas/physics/college/h6yc7687l9o9ofrffvd41qtnkpm7z2ylig.png)
Where
is the angular velocity
r=radius
linear acceleration,
Re-arrange for \omega,
![\omega = \sqrt{(a_c)/(r)}](https://img.qammunity.org/2020/formulas/physics/college/6kl40i1eexrbpbm1vzgby0kvtspl4sbp86.png)
Our acceleration is equal to the gravity force, so replacing,
![\omega = \sqrt{(9.8)/((7884/2))}](https://img.qammunity.org/2020/formulas/physics/college/983v3zv7mz66yqo522bw2rnezoumm3ewxh.png)
![\omega = 49.86*10^(-3)rad/s](https://img.qammunity.org/2020/formulas/physics/college/fagjlfbzg90hcjaxj0sb6oj9zeggbmem9g.png)