Answer : The heat energy required in total for this process was 273529.7 joules.
Solution :
The conversions involved in this process are :
![(1):H_2O(l)(50^oC)\rightarrow H_2O(l)(100^oC)\\\\(2):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)\\\\(3):H_2O(g)(100^oC)\rightarrow H_2O(g)(110^oC)](https://img.qammunity.org/2020/formulas/chemistry/high-school/trxnbzyr0u8wtyr0xwrtmvbnc4p9ovpbd0.png)
Now we have to calculate the enthalpy change.
![\Delta H=[m* c_(p,l)* (T_(final)-T_(initial))]+n* \Delta H_(vap)+[m* c_(p,g)* (T_(final)-T_(initial))]](https://img.qammunity.org/2020/formulas/chemistry/college/xnc35f6zzup0skxjx3kg1pr34173rvvui1.png)
where,
= enthalpy change or heat required = ?
m = mass of water = 110.0 g
= specific heat of liquid water =
![4.18J/g^oC](https://img.qammunity.org/2020/formulas/chemistry/middle-school/lvewetqp3qmg8njc0kzs8fx3hj66q24qx7.png)
= specific heat of water vapor =
![1.84J/g^oC](https://img.qammunity.org/2020/formulas/chemistry/college/8d8zm8ac71okj325lcmy9ip0alap8n0ehq.png)
n = number of moles of water =
![\frac{\text{Mass of water}}{\text{Molar mass of water}}=(110.0g)/(18g/mole)=6.11mole](https://img.qammunity.org/2020/formulas/chemistry/high-school/kyffvtcn2i71pyn18hfrnyqmddb4scawxr.png)
= enthalpy change for vaporization = 40.67 KJ/mole = 40670 J/mole
Now put all the given values in the above expression, we get
![\Delta H=[110.0g* 4.184J/gK* (100-50)^oC]+6.11mole* 40670J/mole+[110.0g* 1.84J/gK* (110-100)^oC]](https://img.qammunity.org/2020/formulas/chemistry/high-school/jy92ct0wf4355e3fs0rcgdlofykbbizqxl.png)
![\Delta H=273529.7J](https://img.qammunity.org/2020/formulas/chemistry/high-school/qne0icmqvak3q7z5sdauepczionf5qx7si.png)
Therefore, the heat energy required in total for this process was 273529.7 joules.