Given:
11.
![\Delta DCB\cong \Delta CDM](https://img.qammunity.org/2022/formulas/mathematics/college/wb3trkh6ad05pwzhk60gfm7cfqjfj0qfhe.png)
13.
![\Delta CBA\cong \Delta STA](https://img.qammunity.org/2022/formulas/mathematics/college/f63e7dtskcefqerefu33g73vko01jubivr.png)
To find:
The missing values to complete the congruence statements:
11.
![\overline{BD}\cong \_\_\_\_\_](https://img.qammunity.org/2022/formulas/mathematics/college/4tbqos36ylyj2zys9x8c9qewasqsyv4x2k.png)
13.
![\angle BAC\cong \_\_\_\_\_](https://img.qammunity.org/2022/formulas/mathematics/college/c8k6fx0471j3npytetysdf9xz5p6iqbm6e.png)
Solution:
11.
We have,
![\Delta DCB\cong \Delta CDM](https://img.qammunity.org/2022/formulas/mathematics/college/wb3trkh6ad05pwzhk60gfm7cfqjfj0qfhe.png)
Here, vertices D, C, B are corresponding to C, D, M. So,
![\overline{BD}\cong \overline{MC}](https://img.qammunity.org/2022/formulas/mathematics/college/hvcwwte3ppiif59ntrzmo7ys5ae14j6vru.png)
Therefore, the complete statement is
.
13.
We have,
![\Delta CBA\cong \Delta STA](https://img.qammunity.org/2022/formulas/mathematics/college/f63e7dtskcefqerefu33g73vko01jubivr.png)
Here, vertices C, B, A are corresponding to S, T, A. So,
![\angle BAC\cong \angle TAS](https://img.qammunity.org/2022/formulas/mathematics/college/hrll0wd752357mv01quii4ayozv0hutb8p.png)
Therefore, the complete statement is
.