Answer:
The required sample size is 171.
Explanation:
Consider the provided information.
The engineer wants to estimate the average life within plus or minus 15 hours with 95 percent confidence. Assuming a process standard deviation of 100 hours,
First calculate the value of
![Z_{(\alpha)/(2)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/ap1707vk3j40bpf9vfrcpxhbozecf7lg9f.png)
By using the table we get.
![Z_{(\alpha)/(2)}=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/rb1esp9dfrixqta470vaukg39yvfn2soy2.png)
Now use the formula:
![N=(\frac{Z_{(\alpha)/(2)}* \sigma}{E})^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/nw4syf8kzbbgshznihm4m5g0pzvxfl3ila.png)
Substitute the respective values in the above formula we get.
![N=((1.96* 100)/(15))^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/atnmcrgq975dlv7hofi78fitr7rh6914nt.png)
![N=((1.96* 100)/(15))^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/atnmcrgq975dlv7hofi78fitr7rh6914nt.png)
![N=((196)/(15))^2=170.73777](https://img.qammunity.org/2020/formulas/mathematics/high-school/a4ea9elcjtd7iz63z35kam7rm64oee7trf.png)
Hence, the required sample size is 171.