Answer:
At 2000 K. K: 0.747
At 3000 K. K: 11.79
Step-by-step explanation:
Let's consider the decomposition of a generic diatomic element in its standard state.
1/2 X₂(g) ⟶ X(g)
The relation between the equilibrium constant (K) and the standard Gibbs energy (ΔG°) is:
![K = e^(-\Delta G \° / R.T)](https://img.qammunity.org/2020/formulas/chemistry/college/jc6zgtnt5i3lfij3voa7lgiqmr0uzwgrx2.png)
where,
R is the ideal gas constant (8.314 × 10⁻³ kJ/mol.K)
T is the absolute temperature
At 2000 K (ΔG° = 4.84 kJ·mol⁻¹)
![K=e^{-4.84kJ.mol^(-1)/8.314 * 10^(-3) kJ.mol^(-1).K^(-1) * 2000 K } =0.747](https://img.qammunity.org/2020/formulas/chemistry/college/j0sjqo3fl8jkxwym6v4l6bqioigtcobeat.png)
At 3000 K (ΔG° = −61.53 kJ·mol⁻¹)
![K=e^{61.53kJ.mol^(-1)/8.314 * 10^(-3) kJ.mol^(-1).K^(-1) * 3000 K } =11.79](https://img.qammunity.org/2020/formulas/chemistry/college/d68fnouvvi65s3kigxqdscpb74fikxucgk.png)