Answer:
![v_2=24\ m/s](https://img.qammunity.org/2020/formulas/physics/college/dgamlx3iilig37g4mcnef6bo1uba3r0wi0.png)
Step-by-step explanation:
It is given that,
Mass of puck 1,
![m_1=0.5\ kg](https://img.qammunity.org/2020/formulas/physics/college/1lx09s8bi7wl0ruyg1bd4kx4evuam029ab.png)
Mass of puck 2,
![m_2=2\ kg](https://img.qammunity.org/2020/formulas/physics/college/7pja0mgjyumm7e5igsfghrfakqcmsb39mz.png)
Initial speed of puck 1,
![u_1=80\ m/s](https://img.qammunity.org/2020/formulas/physics/college/mqwz2skepbpr4a1f22x6fcpqtwy4vxhijn.png)
Initial speed of puck 2,
![u_2=0\ m/s](https://img.qammunity.org/2020/formulas/physics/college/y6gzpwngget6jhwowcx2nofqt3c18ius63.png)
After the collision, the speed of puck 1,
![v_1=-16\ m/s](https://img.qammunity.org/2020/formulas/physics/college/9o1uwyyokt0g73dzkyafguych0x9zz0ixk.png)
Let
is the final velocity (in m/s) of puck 2 after the collision. Using the conservation of momentum as :
![m_1u_1+m_2u_2=m_1v_1+m_2v_2](https://img.qammunity.org/2020/formulas/physics/middle-school/9d2kp0v7xkzkgfcugt38zg1g5w37plk2yu.png)
![0.5* 80+2* 0=0.5* (-16)+2v_2](https://img.qammunity.org/2020/formulas/physics/college/4uk2epht7i6g38jqcifldg0u2jpfqrob3u.png)
![v_2=24\ m/s](https://img.qammunity.org/2020/formulas/physics/college/dgamlx3iilig37g4mcnef6bo1uba3r0wi0.png)
So, the final velocity of the puck 2 after the collision is 24 m/s. Hence, this is the required solution.