152k views
9 votes
D
Evaluate
arcsin
(6)]
at x = 4.
dx

D Evaluate arcsin (6)] at x = 4. dx-example-1

1 Answer

5 votes

Answer:


(1)/(2√(5) )

Explanation:

Let,
\text{sin}^(-1)((x)/(6)) = y

sin(y) =
(x)/(6)


(d)/(dx)\text{sin(y)}=(d)/(dx)((x)/(6))


(d)/(dx)\text{sin(y)}=(1)/(6)


(d)/(dx)\text{sin(y)}=\text{cos}(y)(dy)/(dx) ---------(1)


(1)/(6)=\text{cos}(y)(dy)/(dx)


(dy)/(dx)=\frac{1}{6\text{cos(y)}}

cos(y) =
\sqrt{1-\text{sin}^(2)(y) }

=
\sqrt{1-((x)/(6))^2}

=
\sqrt{1-((x^2)/(36))}

Therefore, from equation (1),


(dy)/(dx)=\frac{1}{6\sqrt{1-(x^2)/(36)}}

Or
(d)/(dx)[\text{sin}^(-1)((x)/(6))]=\frac{1}{6\sqrt{1-(x^2)/(36)}}

At x = 4,


(d)/(dx)[\text{sin}^(-1)((4)/(6))]=\frac{1}{6\sqrt{1-(4^2)/(36)}}


(d)/(dx)[\text{sin}^(-1)((2)/(3))]=\frac{1}{6\sqrt{1-(16)/(36)}}


=\frac{1}{6\sqrt{(36-16)/(36)}}


=\frac{1}{6\sqrt{(20)/(36) }}


=(1)/(√(20))


=(1)/(2√(5))

User Luhn
by
4.1k points