Answer:
9.10 atm
Step-by-step explanation:
At the normal boiling point, the vapor pressure of a liquid is equal to the atmospheric pressure, 1 atm. Because ΔHvap doesn't change, we can use the Clausius-Clayperon equation to determinate the pressure at the other temperature.
So, for p1 = 1 atm, T1 = -29.2ºC + 273 = 243.8 K, T2 = 40ºC + 273 = 313 K, R = 8.3145 J/molK (gas constant):
![ln((p2)/(p1) ) = (DHvap)/(R) ((1)/(T1) - (1)/(T2))](https://img.qammunity.org/2020/formulas/chemistry/college/ki0xs0231gs892a1l8jjiko8hgdusxwbsg.png)
ln(p2/1) = (20250/8.3145)*(1/243.8 - 1/313)
ln(p2) = 2435.50424*9.068x10⁻⁴
ln(p2) = 2.2086
p2 =
![e^(2.2086)](https://img.qammunity.org/2020/formulas/chemistry/college/lheit3h1e5syk5hjdd3ya1pjuaaxls7dul.png)
p2 = 9.10 atm