Answer:
![\omega=2.85*10^(13)(rad)/(s)](https://img.qammunity.org/2020/formulas/physics/college/7ynuwzybyavxv1fombtfehqc80wy0926v0.png)
Step-by-step explanation:
The translational kinetic energy depends on the mass and speed of the body, as follows:
![K_T=(mv^2)/(2)\\K_T=(5.30*10^(-26)kg(1.49*10^3(m)/(s))^2)/(2)\\\\K_T=1.18*10^(-19)J](https://img.qammunity.org/2020/formulas/physics/college/rwz6200zw81548xiqbapd2h57518kqrfex.png)
While rotational kinetic energy depends on the moment of inertia and the angular velocity of the body, as follows:
. We know that:
![K_R=(2)/(3)K_T(2)](https://img.qammunity.org/2020/formulas/physics/college/p86i1v36s5620e24vm4k3c9rnoma3fpak8.png)
Replacing (1) in (2):
![(I\omega^2)/(2)=(2)/(3)K_T\\\\\omega=\sqrt{(4)/(3)(K_T)/(I)}\\\omega=\sqrt{(4)/(3)(1.18*10^(-19)J)/(1.94*10^(-46)kg\cdot m^2)}\\\omega=2.85*10^(13)(rad)/(s)](https://img.qammunity.org/2020/formulas/physics/college/qwqy05wtcdodumgspci53u96o7na51ukrb.png)