Answer:
Subtract
from
we get
![\mathbf{7c^2-9cd+6d^2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tyj7umnqpv0hskggg34wkc6tvcyz3u11uo.png)
Explanation:
We need to Subtract
from
![4c^2 + 3cd + 2d^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/3hwb6w0f1stv10elcbzbab8qbb1vjj1n9p.png)
(Note: Considering 2d^2 instead of 2d as thinking it typo error)
Subtracting from means we have to subtract
![4c^2 + 3cd + 2d^2 -(-3c^2 + 12cd - 4d^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rm9vi6049jpkjjsvwkucbcldbuo2oo613g.png)
Subtracting:
![4c^2 + 3cd + 2d^2 -(-3c^2 + 12cd - 4d^2)\\=4c^2 + 3cd + 2d^2 +3c^2 - 12cd + 4d^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/g9osh9ns4d99mtzvb0uncthezlcollhmn7.png)
Combining like terms (Like terms are those that have same variables like 4c^2 and 3c^2 are like terms, 3cd and -12cd are like terms, 2d^2 and 4d^2 are like terms)
![=4c^2+3c^2 + 3cd-12cd + 2d^2+4d^2 \\=7c^2-9cd+6d^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/z0abh2t5172ltwohv7ymwihc9vik5fgz4l.png)
So, Subtract
from
we get
![\mathbf{7c^2-9cd+6d^2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tyj7umnqpv0hskggg34wkc6tvcyz3u11uo.png)