Answer:
(x,y) = (-5,8)
Explanation:
The given equations are:
![$ 7x + 2y = -19 \hspace{15mm} ....(1) $](https://img.qammunity.org/2020/formulas/mathematics/college/k0t6ump4yt0101hj9kpps9rsupyog4dy51.png)
![$ -5x+ y = 33 \hspace{15mm} ....(2) $](https://img.qammunity.org/2020/formulas/mathematics/college/tyagbhiqsf7xuvts7s52bdeexe4teiovxx.png)
Equation (2) can be written as:
![$ y = 5x + 33 $](https://img.qammunity.org/2020/formulas/mathematics/college/bczbivwqh2hhqtv6wzz8np5l4lqyqbtdwo.png)
The value of
is now substituted in Equation (1).
∴ Equation (1) becomes
![$ 7x + 2(5x + 33) = -19 $](https://img.qammunity.org/2020/formulas/mathematics/college/mn7w22kci4kkh6v3rnnl2p56tdsxcu63m8.png)
⇒
![$ 7x + 10x + 66 = -19 $](https://img.qammunity.org/2020/formulas/mathematics/college/sy2fajy32kn256oi6trlst7kin5wv1pw1c.png)
⇒ 17x = - 85
⇒ x = -5
Now substitute the value of x in (2) to get the value of y.
![$ \implies -5(-5) + y = 33 $](https://img.qammunity.org/2020/formulas/mathematics/college/w1rzxbkq2dmnjk4bcp38sg548x3t9avcti.png)
![$ \implies y = 33 - 25 = 8 $](https://img.qammunity.org/2020/formulas/mathematics/college/ttfj1zv7vzt1y11sxhi6jmlo6mbpm3f70j.png)
∴ y = 8
The ordered pair is (x,y) = (-5,8)