Answer:
The minimum speed of the box bottom of the incline so that it will reach the skier is 8.19 m/s.
Step-by-step explanation:
It is given that,
Mass of the box, m = 2.2 kg
The box is inclined at an angle of 30 degrees
Vertical distance, d = 3.1 m
The coefficient of friction,

Using the work energy theorem, the loss of kinetic energy is equal to the sum of gain in potential energy and the work done against friction.


W is the work done by the friction.







v = 8.19 m/s
So, the speed of the box is 8.19 m/s. Hence, this is the required solution.