Answer:
![GH < HJ](https://img.qammunity.org/2020/formulas/mathematics/middle-school/71i4gvyga00vtrgf8my6wbzz3gelg2m2fv.png)
Explanation:
We are given that
![\angle G=70^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fpczuxceg7vers79an05t7qhwq46b223df.png)
![\angle J=40^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zh3yskpq9a6s7typckkjf99rzqaju8r8sw.png)
We have to fill the correct symbol in the blank space.
Greater angle and greater side theorem: It states that when
![\angle A>\angle B](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z1bx803b5upft944stb5p5n931fccfn4yl.png)
Then, Opposite side to angle A > opposite side to angle B.
When Opposite side to angle A > opposite side to angle B
Then,
![\angle A >\angle B](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xkxerzpw2mvg1c3suhd2rsnhc12o010d6l.png)
Side opposite to angle J=GH
Side opposite to angle G=HJ
Using the above theorem,
![\angle G >\angle J](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kirjgkeeiwd61fxk4l48liz63ztvazpzkw.png)
Then,
![HJ >GH](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oweyy8bjxk0mtohqk3zdp9wma3f9vr8m0p.png)
Hence,
![GH < HJ](https://img.qammunity.org/2020/formulas/mathematics/middle-school/71i4gvyga00vtrgf8my6wbzz3gelg2m2fv.png)