Answer
given,
mass of truck = 2100 Kg
velocity in north direction = 41 km/h
= 41 x 0.278 m/s
= 11.398 m/s
velocity in north direction = 51 km/h
= 51 x 0.278 m/s
= 14.178 m/s
a) Change in K.E
=
![(1)/(2)m(V_f^2-V_i^2)](https://img.qammunity.org/2020/formulas/physics/high-school/hkcgzk4znmfzguh3ykpiom6wd69doz95y9.png)
=
![(1)/(2)* 2100* (14.178^2-11.398^2)](https://img.qammunity.org/2020/formulas/physics/high-school/m77hvwwaj9ymmxgxjhv49xpk89r0ls25i7.png)
= 7.453 x 10⁴ J
b) Change in momentum
![\Delta P = m(v_f-V_1)](https://img.qammunity.org/2020/formulas/physics/high-school/2h59jnk5eucz5ar0wjwpi4zz0ov62yhbsy.png)
![\Delta P = 2100* (14.178 - 11.398)](https://img.qammunity.org/2020/formulas/physics/high-school/8cajns2euseih1h0mreg6ruv4o69vk0o7h.png)
![\Delta P = 5838\ kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/a59xe7f0s8q364djjnjdchb8k8u44zjt5r.png)
c) Direction of momentum
![\theta = tan^(-1)((P_y)/(P_x))](https://img.qammunity.org/2020/formulas/physics/high-school/6w83ipnrbx5drfhxf0t6szdxd7kqfcu4jq.png)
![\theta = tan^(-1)((11.398)/(14.178))](https://img.qammunity.org/2020/formulas/physics/high-school/czksdcw59yymaubhjlooq509naj113t3xv.png)
![\theta = 38.796^0](https://img.qammunity.org/2020/formulas/physics/high-school/3m9uxg69q0g73sygeale6u4j8njtr70opo.png)