Answer : The concentration of
at equilibrium is 0 M.
Solution : Given,
Concentration of
= 0.0200 M
Concentration of
= 1.00 M
The given equilibrium reaction is,
![Fe^(3+)(aq)+3C_2O_4^(2-)(aq)\rightleftharpoons [Fe(C_2O_4)_3]^(3-)(aq)](https://img.qammunity.org/2020/formulas/chemistry/college/shqxlmoa1b81hafytykb5zi54fwam1l345.png)
Initially conc. 0.02 1.00 0
At eqm. (0.02-x) (1.00-3x) x
The expression of
will be,
![K_c=([[Fe(C_2O_4)_3]^(3-)])/([C_2O_4^(2-)]^3[Fe^(3+)])](https://img.qammunity.org/2020/formulas/chemistry/college/kigff6zkdpdxdbv3fak2x5791xbldo1fsk.png)
![1.67* 10^(20)=((x)^2)/((1.00-3x)^3* (0.02-x))](https://img.qammunity.org/2020/formulas/chemistry/college/tdcdhy6d5qrgmy5dkl8cioy7zh5zea57d7.png)
By solving the term, we get:
![x=0.02M](https://img.qammunity.org/2020/formulas/chemistry/college/8tsl3xxjyluc032kv5ku42hx9o0s6yhrpc.png)
Concentration of
at equilibrium = 0.02 - x = 0.02 - 0.02 = 0 M
Therefore, the concentration of
at equilibrium is 0 M.