Answer:
a) 70
b) 10π ft²/ft
c) 0.24 ft/sec
Explanation:
1) y = x³ + 2x
![(dy)/(dt)=(d(x^3+2x))/(dt)](https://img.qammunity.org/2020/formulas/mathematics/college/29ji9g4s36iqyzr8tdovmcqi5rjimuvjl3.png)
or
=
![3x^2(dx)/(dt)+2(dx)/(dt)](https://img.qammunity.org/2020/formulas/mathematics/college/wv9kyfmgl1f0dgmed4ukfso7300gvgaeqx.png)
at
and x = 2
=
![3(2)^2*(5)+2*(5)](https://img.qammunity.org/2020/formulas/mathematics/college/1515nf4zs0qcq6t94xj4as6rw41s8bf7k5.png)
or
= 60 + 10 = 70
2) A = πr² ft²
![(dA)/(dr)=(d(\pi r^2))/(dr)](https://img.qammunity.org/2020/formulas/mathematics/college/o4fixsxj3eo0rj3raw5iafcyf9o0bnutr8.png)
or
= 2(πr)
at r = 5 ft
= 2(π × 5) ft²/ft
or
= 10π ft²/ft
3) From Pythagoras theorem
Base² + Perpendicular² = Hypotenuse²
Thus,
B² + P² = H² .............(1)
here, H = length of the ladder
P is the height of the wall
B is the distance from the wall at bottom
or
B² + P² = 25² ...........(1)
at B = 20 ft
20² + P² = 25²
or
P² = 625 - 400
or
P = √225
or
P = 15 ft
differentiating (1) with respect to time, we get
![2B(dB)/(dt)+2P(dP)/(dt)=0](https://img.qammunity.org/2020/formulas/mathematics/college/6lbqmsn1s1t3xjrulwy3zhvb9lw7avemrv.png)
at B = 20 ft,
and P = 15 ft
⇒ 2(20)(0.18) +
= 0
or
= - 7.2
or
= - 0.24 ft/sec (Here negative sign depicts the ladder slides down)