Answer :
The specific heat of calorimeter is
![1.78kJ/^oC](https://img.qammunity.org/2020/formulas/chemistry/college/a6hidta7sea8bvy026wgupvyszm1rm5mgv.png)
The energy of combustion per mole of vanillin is
![-4.18* 10^3kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/td8wt9r3ucw4n83o0nvc5lb5104k9ngeqh.png)
Explanation :
Part 1 :
First we have to calculate the energy released for 0.1625 g of benzoic acid.
Energy released = Energy released × Mass of benzoic acid
Energy released = (26.42 kJ/g) × (0.1625g)
Energy released = -4.293 kJ
Now we have to calculate the specific heat of calorimeter.
Heat released by the reaction = Heat absorbed by the calorimeter
![\Delta E_(rxn)=q_(rxn)=-q_(cal)](https://img.qammunity.org/2020/formulas/chemistry/college/abwie761igpdrlbldsfyq30ojby74pgv3h.png)
![q_(rxn)=q_(cal)=-c_(cal)* \Delta T](https://img.qammunity.org/2020/formulas/chemistry/college/z87nby94ywz014q6vfax4msej9tz8mirbd.png)
where,
= heat released by the reaction = -4.293 kJ
= heat absorbed by the calorimeter
= specific heat of calorimeter = ?
= change in temperature =
![2.41^oC](https://img.qammunity.org/2020/formulas/chemistry/college/9wa17wj77rferwovz5b44lajf6160veia2.png)
Now put all the given values in the above formula, we get:
![-4.293kJ=-c_(cal)* 2.41^oC](https://img.qammunity.org/2020/formulas/chemistry/college/ndabwfdkqaehzsv8dn5rsnjan4p31x2v17.png)
![c_(cal)=1.78kJ/^oC](https://img.qammunity.org/2020/formulas/chemistry/college/edikadsqz57i26mh1bmp6t5yok6bibiw5u.png)
Thus, the specific heat of calorimeter is
![1.78kJ/^oC](https://img.qammunity.org/2020/formulas/chemistry/college/a6hidta7sea8bvy026wgupvyszm1rm5mgv.png)
Part 2 :
First we have to calculate the energy released by the reaction.
![q_(rxn)=q_(cal)=-c_(cal)* \Delta T](https://img.qammunity.org/2020/formulas/chemistry/college/z87nby94ywz014q6vfax4msej9tz8mirbd.png)
![q_(cal)=c_(cal)* \Delta T](https://img.qammunity.org/2020/formulas/chemistry/college/4gggxs49dg46b2n3akn5fl1v9zdowdntdz.png)
where,
= heat released by the reaction = ?
= heat absorbed by the calorimeter
= specific heat of calorimeter =
![1.78kJ/^oC](https://img.qammunity.org/2020/formulas/chemistry/college/a6hidta7sea8bvy026wgupvyszm1rm5mgv.png)
= change in temperature =
![3.19^oC](https://img.qammunity.org/2020/formulas/chemistry/college/cj23d3z4porzk3la1ax91ogxu9kvk8h88p.png)
Now put all the given values in the above formula, we get:
![q_(cal)=c_(cal)* \Delta T](https://img.qammunity.org/2020/formulas/chemistry/college/4gggxs49dg46b2n3akn5fl1v9zdowdntdz.png)
![q_(cal)=1.78kJ/^oC* 3.19^oC](https://img.qammunity.org/2020/formulas/chemistry/college/rqqeu9sb27y9mpvc8nbjs08m29ffp3767g.png)
![q_(cal)=5.68kJ](https://img.qammunity.org/2020/formulas/chemistry/college/6won91oh1m4nfgypyfam5jdq2volto7edc.png)
![\Delta E_(rxn)=q_(rxn)=-q_(cal)](https://img.qammunity.org/2020/formulas/chemistry/college/abwie761igpdrlbldsfyq30ojby74pgv3h.png)
![\Delta E_(rxn)=-5.68kJ](https://img.qammunity.org/2020/formulas/chemistry/college/ridt5xbqm1a5ssdnsm3d1dnhc3mcgn4cf3.png)
Now we have to calculate the energy of combustion per mole of vanillin.
![\text{Moles of vanillin}=\frac{\text{Mass of vanillin}}{\text{Molar mass of vanillin}}](https://img.qammunity.org/2020/formulas/chemistry/college/4zo2pw57f1krc49bmaq2k8punzb1d971xr.png)
Molar mass of vanillin = 152.15 g/mole
Mass of vanillin = 0.2070 g
![\text{Moles of vanillin}=(0.2070g)/(152.15g/mole)=0.00136mole](https://img.qammunity.org/2020/formulas/chemistry/college/7ibkln5c4rcw23tivpzpajg5s0cows8vxb.png)
![\Delta E_(rxn)=(-5.68kJ)/(0.00136mole)=-4.18* 10^3kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/eru2ywdn9bm6044j0q8dlj60pb7yb6fcye.png)
Thus, the energy of combustion per mole of vanillin is
![-4.18* 10^3kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/td8wt9r3ucw4n83o0nvc5lb5104k9ngeqh.png)