Answer:
21.68 minutes ≈ 21.7 minutes
Explanation:
Given:
![T=60+40e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/jjj77piy8tqooc5hxf6yc8xg7z0elclkdn.png)
Initial temperature
T = 100°C
Final temperature = 60°C
Temperature after (t = 3 minutes) = 90°C
Now,
using the given equation
![T=60+40e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/jjj77piy8tqooc5hxf6yc8xg7z0elclkdn.png)
at T = 90°C and t = 3 minutes
![90=60+40e^(k(3))](https://img.qammunity.org/2020/formulas/mathematics/college/gab8qn482aw2q1f2zgbrjwsqbfjsmbiyxz.png)
![30=40e^(3k)](https://img.qammunity.org/2020/formulas/mathematics/college/6eyyo48ijp2uo6ngq2qg3mv77lhv119cge.png)
or
![e^(3k)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/dhj7t95lcxzkhrq5c0e9qhngrk5lw5d2ru.png)
taking the natural log both sides, we get
3k =
![\ln((3)/(4))](https://img.qammunity.org/2020/formulas/mathematics/college/64cbann49okr5ciuy2jg2kl22n3o1p42um.png)
or
3k = -0.2876
or
k = -0.09589
Therefore,
substituting k in 1 for time at temperature, T = 65°C
![65=60+40e^(( -0.09589)t)](https://img.qammunity.org/2020/formulas/mathematics/college/5o2qq4gih0ril4gpycszun5tawc5obbsna.png)
or
![5=40e^(( -0.09589)t)](https://img.qammunity.org/2020/formulas/mathematics/college/ro6itscrbwb9b4oeqt0lwhrc0j2c4sb00a.png)
or
![e^(( -0.09589)t)=(5)/(40)](https://img.qammunity.org/2020/formulas/mathematics/college/6pnztab8lrk9fz438zxo31io21a3lroavw.png)
or
![e^(( -0.09589)t)=0.125](https://img.qammunity.org/2020/formulas/mathematics/college/e02g9lmkwfvlhnwo36dmqnpnl9x1ke46oh.png)
taking the natural log both the sides, we get
( -0.09589)t = ln(0.125)
or
( -0.09589)t = -2.0794
or
t = 21.68 minutes ≈ 21.7 minutes