Answer:
The minimum initial velocity has to be 127.8 ft/s
Explanation:
Hi there!
The position vector of the projectile can be calculated as follows:
r =(x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)
Where:
x0 = initial horizontal position.
v0 = initial velocity.
t = time.
α = launching angle.
y0 = initial vertical position.
g = acceleration due to gravity (-32.2 ft/s² considering the upward direction as positive).
Please, see the attached figure for a better understanding of the problem. Notice that when the projectile reaches the ground, its position vector will be:
r final = (220, 0) feet
Then, using the equations:
200 feet = x0 + v0 · t · cos α
0 feet = y0 + v0 · t · sin α + 1/2 · g · t²
Since the origin of the frame of reference is located at the launching point, x0 and y0 = 0. Then:
200 ft = v0 · t · cos 12°
0 ft = v0 · t · sin 12° - 1/2 · 32.2 ft/s² · t²
We have a system of equations. Let´s solve the first equation for v0:
200 ft = v0 · t · cos 12°
200 ft/(t · cos 12°) = v0
Now, let´s replace v0 in the second equation:
0 ft = v0 · t · sin 12° - 1/2 · 32.2 ft/s² · t²
0 ft = 200 ft/(t · cos 12°) · t · sin 12° - 16.1 ft/s² · t² (sin 12°/cos 12° = tan 12°)
0 ft = 200 ft · tan 12° - 16.1 ft/s² · t²
(0 ft - 200 ft · tan 12°) / -16.1 ft/s² = t²
t = 1.6 s
Now, let´s calculate v0:
200 ft/(t · cos 12°) = v0
200 ft/(1.6 s · cos 12°) = v0
v0 = 127.8 ft/s