Answer:
(0.649,0.691)
Explanation:
Basically that is a problem about confidence Interval for a Popuplation Mean.
The formula for confidence interval is given by,
![ci= \bar{x} \pm t*(s)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/y28kftrs4ookzm32xjf95nkd5b2g07w6da.png)
Degree of Freedom,
![DF = 15-1 = 14](https://img.qammunity.org/2020/formulas/mathematics/college/u1nh9uijymwrs6zohnfmgpk79ci3wbh2sl.png)
The T-Table say that for 80% ci and DF = 14 the value of t must be 1.345.
![ci = 0.670 \pm 1.345*(0.0616)/(√(15))](https://img.qammunity.org/2020/formulas/mathematics/college/bcxupfjcps9jqhifrw92jw46aghtzya0zg.png)
![ci = 0.670 \pm 0.021](https://img.qammunity.org/2020/formulas/mathematics/college/ab9cclhjlmy5d8710hgsq7zajd8aato03h.png)
![(0.649,0.691)](https://img.qammunity.org/2020/formulas/mathematics/college/sbblaoxv5cii6o8tu5g4ucrs0r9ztcd4cc.png)