Answer:
(a)
![\alpha = - 1.32\ rev/m^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/4yc8xpis58z7y836z7itfis7mao08xndew.png)
(b)
![\theta = 13674\ rev](https://img.qammunity.org/2020/formulas/physics/high-school/zjz7i7794utw4hj4sa1c0a0vzd05kb7lku.png)
(c)
![\alpha_(tan) = 8.75* 10^(- 4)\ m/s^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/9y9sgwpbdg70v9i0x7tatxxogfmo6lzbre.png)
(d)
![a = 22.458\ m/s^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/f4vcbem9uen441h63lz97uvou4eukupy2u.png)
Solution:
As per the question:
Angular velocity,
![\omega = 190\ rev/min](https://img.qammunity.org/2020/formulas/physics/high-school/cf94a37rxi9gafnxda8ma9v5hfxxg2zaqt.png)
Time taken by the wheel to stop, t = 2.4 h =
![2.4* 60 = 144\ min](https://img.qammunity.org/2020/formulas/physics/high-school/kiqcv49gz937delfaz8yw7fu2pn3bztycu.png)
Distance from the axis, R = 38 cm = 0.38 m
Now,
(a) To calculate the constant angular velocity, suing Kinematic eqn for rotational motion:
![\omega' = \omega + \alpha t](https://img.qammunity.org/2020/formulas/physics/college/pvlpovvywex23lst9me6qnw1d2iunjc8a6.png)
= final angular velocity
= initial angular velocity
= angular acceleration
Now,
![0 = 190 + \alpha * 144](https://img.qammunity.org/2020/formulas/physics/high-school/kdhl1et02f85ss33xmw82vm7xqg7pzk1mk.png)
![\alpha = - 1.32\ rev/m^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/4yc8xpis58z7y836z7itfis7mao08xndew.png)
Now,
(b) The no. of revolutions is given by:
![\omega'^(2) = \omega^(2) + 2\alpha \theta](https://img.qammunity.org/2020/formulas/physics/college/4c90d5nnr9d4ddon83tnu4ahvbfmgmki4h.png)
![0 = 190^(2) + 2* (- 1.32) \theta](https://img.qammunity.org/2020/formulas/physics/high-school/h5ltvnvye7nh55xdxg2y5cmlmog9uv74wa.png)
![\theta = 13674\ rev](https://img.qammunity.org/2020/formulas/physics/high-school/zjz7i7794utw4hj4sa1c0a0vzd05kb7lku.png)
(c) Tangential component does not depend on instantaneous angular velocity but depends on radius and angular acceleration:
![\alpha_(tan) = 0.38* 1.32* (2\pi)/(3600) = 8.75* 10^(- 4)\ m/s^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/vt3lheuwlgk0rqeld5leldhyc3ijco3ub2.png)
(d) The radial acceleration is given by:
![\alpha_(R) = R\omega^(2) = 0.32(80* (2\pi)/(60))^(2) = 22.45\ rad/s](https://img.qammunity.org/2020/formulas/physics/high-school/g4lsdeffi5bv0lw4q74vculrwc21vvfv54.png)
Linear acceleration is given by:
![a = \sqrt{\alpha_(R)^(2) + \alpha_(tan)^(2)}](https://img.qammunity.org/2020/formulas/physics/high-school/hnja969gkv3k5k25lhjxvzel8pn0vcyfee.png)
![a = \sqrt{22.45^(2) + (8.75* 10^(- 4))^(2)} = 22.458\ m/s^(2)](https://img.qammunity.org/2020/formulas/physics/high-school/l74bwn0s36srfypppk2dyaqoq4zbcav8zq.png)