Answer:
![d=4.32*10^(-3)mm^(-2)](https://img.qammunity.org/2020/formulas/physics/college/ufa06hzr9s34uv90yeqzx2f0sznhdvj7pt.png)
Step-by-step explanation:
We need to find the constant for the particular material given by the yield strenght equation,
That is,
![\sigma_y =\sigma_0+k_yd^(1/2)](https://img.qammunity.org/2020/formulas/physics/college/70ruvrswnxe6470cb2cl7yxhd2bpx1vfgg.png)
Where
The yield strenght
Average grain diameter
constant for the particular material
Our values are,
![d=1*10^(-2)mm](https://img.qammunity.org/2020/formulas/physics/college/4nh9ds7r9uv0m9jykc754ll6f7ltzzcz03.png)
![\sigma_y=230Mpa](https://img.qammunity.org/2020/formulas/physics/college/lh2ee73x6nvy240wsiuaqgpwlevmvv8sn0.png)
Substituting for
mm and 230Mpa for
,
![230 = \sigma_0 +(1*10^(-2))^(-1/2)k_y](https://img.qammunity.org/2020/formulas/physics/college/ny1qjj840jzgzxd1qgz8qjkg37w5kujh5z.png)
(1)
Substituting for
and 275Mpa for
,
![275 = \sigma_0 +(6*10^(-23))^(-1/2)k_y](https://img.qammunity.org/2020/formulas/physics/college/arn93aplhriypz3mqws2hek0aezhfea6i6.png)
(2)
Solving the two values (1) and (2) we have,
![k_y=15.5Mpa (mm)^(1/2)](https://img.qammunity.org/2020/formulas/physics/college/a7rwri4w7e5anaivr3jzfmmetbh2fhq4e2.png)
![\sigma_0 = 75Mpa](https://img.qammunity.org/2020/formulas/physics/college/6saj2pn9z3atb6nvi2wjmtlts0po24fztc.png)
Substituting now for 310Mpa calculate 310Mpa
![\sigma_y =\sigma_0+k_yd^(1/2)](https://img.qammunity.org/2020/formulas/physics/college/70ruvrswnxe6470cb2cl7yxhd2bpx1vfgg.png)
![310 =\75+15.5d^(1/2)](https://img.qammunity.org/2020/formulas/physics/college/5pcmde872q233nb5gm2jfbowlyu3nf2gp0.png)
Solving for d,
![d=4.32*10^(-3)mm^(-2)](https://img.qammunity.org/2020/formulas/physics/college/ufa06hzr9s34uv90yeqzx2f0sznhdvj7pt.png)