Answer:
L=31.9 mm
δ = 0.22 mm
Step-by-step explanation:
Given that
v= 14 m/s
ρ=997 kg/m³
μ= 0.891 × 10⁻3 kg/m·s
As we know that when Reynolds number grater than 5 x 10⁵ then flow will become turbulent.
![Re=(\rho vL)/(\mu)](https://img.qammunity.org/2020/formulas/physics/college/umyqkz6lz3mnak0go6ow1loah89zs8526x.png)
![L=(Re\mu)/(\rho v)](https://img.qammunity.org/2020/formulas/physics/college/gdwhd9huqiikbcqooxxgfy22y619e6brx3.png)
![L=(5* 10^5* 0.891* 10^(-3))/( 14 * 997)\ m](https://img.qammunity.org/2020/formulas/physics/college/xya4fs4wb6qcqmdsjlsjsd2tj3qzj0unud.png)
L=0.0319 m
L=31.9 mm
The thickness of the boundary layer at that location L given as
![\delta =(5L)/(√(Re))](https://img.qammunity.org/2020/formulas/physics/college/gbrufvr1z9pn3l7ekeagv1hok0a7wzr3ev.png)
![\delta =(5*0.0319)/(√(5* 10^5))](https://img.qammunity.org/2020/formulas/physics/college/756yht2644chcngoysfahtuxdxzzzplkcw.png)
δ = 0.00022 m
δ = 0.22 mm