Answer:
![\theta=0.52^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/8jb89i2ccofikf0cjk9jbok4phuuxai3gt.png)
Step-by-step explanation:
It is given that,
Wavelength in vacuum,
![\lambda_1=450\ nm](https://img.qammunity.org/2020/formulas/physics/college/69ooqabul5my7xaazs0yxokbymyuzlo3pp.png)
Wavelength in vacuum,
![\lambda_2=650\ nm](https://img.qammunity.org/2020/formulas/physics/college/43rlwsk3j6eb2mqexw2whsfk38quge50tc.png)
Refractive index for air,
First refractive index,
![n =1.44](https://img.qammunity.org/2020/formulas/physics/college/xxmt80bgoawlsgsn4ni17pg3hurhe4h5hd.png)
Second refractive index,
![n' =1.42](https://img.qammunity.org/2020/formulas/physics/college/tw6oduft620ewc9zfsfrrehbik7t00v62v.png)
A ray is incident at an angle of incidence of 50 degrees. Let r is the angle of refraction. Firstly calculating the angle of refraction for two values of wavelength from Snell's law as :
![(sin\ i)/(sin\ r)=(n_2)/(n_1)](https://img.qammunity.org/2020/formulas/physics/college/8ujbzd4q6ppx0qbb0gz0gk9m1vbb7945h0.png)
![r=sin^(-1)((n_1\ sin\ i)/(n))](https://img.qammunity.org/2020/formulas/physics/college/2t47ln0zddz9k3qggilv9ejwiwdshmhasm.png)
For 450 nm,
![r=sin^(-1)((1\ sin(50))/(1.44))](https://img.qammunity.org/2020/formulas/physics/college/t2urj0yh1xbzgdvaf8zohuof92gue8w9mh.png)
r = 32.13 degrees
For 650 nm,
![r'=sin^(-1)((1\ sin(50))/(1.42))](https://img.qammunity.org/2020/formulas/physics/college/5611ipredhpmiyt359n5izdfwp264f0m2u.png)
r' = 32.65 degrees
Let
is the angle of dispersion between the two refracted rays in the oil such that,
![\theta=r'-r](https://img.qammunity.org/2020/formulas/physics/college/aifq8vfidx5ygc932q1xfzbbpzmrqcs6dx.png)
![\theta=32.65-32.13](https://img.qammunity.org/2020/formulas/physics/college/bg599i0cda1lmg12vkuwdbq8h8mcnt272r.png)
![\theta=0.52^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/8jb89i2ccofikf0cjk9jbok4phuuxai3gt.png)
So, the angle of dispersion between the two refracted rays in the oil is closest to 0.52 degrees.