Answer:
StartFraction StartRoot 3 EndRoot Over 3 EndFraction
Explanation:
see the attached figure to better understand the problem
step 1
we know that
In the right triangle XYZ
---> adjacent side divided by the hypotenuse
substitute the values
![cos(30\°)=(ZY)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgh5hulgy67f1x13xbyz071qi1dntf98mb.png)
Remember that
![cos(30\°)=(√(3))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ls9iz138uk6yapzimpk11ejjvaqrzqyhej.png)
so
substitute
![(√(3))/(2)=(ZY)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjmoowou7g3j0gofvr77zg98bn9x1whm70.png)
![ZY=(4)(√(3))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cfzzhvt8loga45gvib63njz7ys1ihyr28t.png)
![ZY=2√(3)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/401u87akcs21ytwdw1hw8f0ynt8aorma6q.png)
step 2
--> opposite side divided by the hypotenuse
substitute the values
![sin(30\°)=(XZ)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wbwzb7hjqlhwc67u75qog41ubyeimpqc34.png)
Remember that
![sin(30\°)=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/wtbtvoe9jd00ad01sz036cdlhmr7m9tbj4.png)
so
![(1)/(2)=(XZ)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lqj6pnjmmijg48frqutyfgmijl1oxbtf1w.png)
![XZ=2\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hhneqc92bk5vbws89ldrjmeje86z4mwv78.png)
step 3
--> opposite side divided by adjacent side
substitute the values
Simplify
![tan(Y)=(√(3))/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/y3i0ufqli6g61phrzkfatvn2rnecbgyewy.png)
so
StartFraction StartRoot 3 EndRoot Over 3 EndFraction