Answer:
The value of x would be
![(5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/932m3fox3fmk5lfk3tls2eyev0gf4uzdnd.png)
Explanation:
Given,
The dimension of the cardboard = 10 ft by 10 ft,
∵ After removing four equal squares of size x ( in ft ) from the corners,
The dimension of the resultant box would be,
Length = ( 10 - 2x ) ft,
Width = ( 10 - 2x ) ft,
Height = x ft,
The volume of box,
![V=(10-2x)* (10 - 2x)* x=x(10-2x)^2 = x(100 - 40x + 4x^2)=100x - 40x^2 + 4x^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/fofw03gji819pimontro5817k5v786ap0u.png)
Differentiating with respect to x,
![V'=100 - 80x + 12x^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/sz509smcksnbqa9ju92lkxflp6yxt5pxi7.png)
Again differentiating with respect to x,
![V''=-80 + 24x](https://img.qammunity.org/2020/formulas/mathematics/high-school/uc0nj499odmffsw3osfi8ynztytwpzqgau.png)
For maxima or minima,
![V'=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/8lup93fdonuym8wi6bwl91azg8170dt97h.png)
![\implies 100 - 80x + 12x^2 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/e51xnfcawji66fu3tg0kvzuy0tnwhunciv.png)
![\implies 3x^2 - 20x + 25=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7c71weu7mxh32pm7q28f2wuf5lswokp7nx.png)
By quadratic formula,
![x=(20\pm √(20^2-4* 3* 25))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v2ntrot5hunfb2upz64h1lljxinpuufcts.png)
![x=(20\pm √(400 - 300))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/u7kynqc36q6xz2ycxzt3q0mojn8cr7zwqt.png)
![x=(20\pm √(100))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/15cduxddtdscznic8qvv6amjbu55iffwod.png)
![x=(20\pm 10)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t5biod9m25z2qevn3zf5qr226umt1cx2sm.png)
![\implies x = (10)/(6)=(5)/(3)\text{ or } x = 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/ntu1qfqpzxdnez2oww6zldrznxkrzmkyfq.png)
For x = 5/3, V'' = negative,
While for x = 5, V'' = Positive,
Hence, the value of x would be 5/3 ft for maximising the volume.