Answer:
Mean = 0.17
Variance = 0.0068
Explanation:
It is given in the question that the data is uniformly distributed, therefore the mean will be calculated using the formula
Mean =
![(a+b)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qdmpit0oh3ujlvz76s6rn1h8svqsdru8qz.png)
here, a is the minimum value and b is the maximum value
for the data: 0.15, 0.16, 0.17, 0.18, and 0.19
a = 0.15
b = 0.19
Therefore,
Mean =
![(0.15+0.19)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/7ai6vj9x0ocedzcq4o7cvsqne4abcn0z3n.png)
or
Mean =
![(0.34)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/wb890x5zaemn6ix6rhfpnq665hg3d655rl.png)
or
Mean = 0.17
Variance =
![((b-a+1)^2-1)/(12)](https://img.qammunity.org/2020/formulas/mathematics/college/m2fhyg55ghwy3pye26pkb618x89wqfcc90.png)
or
Variance =
![((0.19-0.15+1)^2-1)/(12)](https://img.qammunity.org/2020/formulas/mathematics/college/76pv2nffhixgs9q33tpzp33f5kwmzyg1x9.png)
or
Variance = 0.0068