Answer:
11.968 square units.
Explanation:
The given equation of the curve is

We need to write the summation to estimate the area under the given curve from x=2 to x=5 using 3 rectangles and right endpoints.
End points are : 2,3,4,5
Right end points are : 3,4,5
Find the value of the function at x=3,4,5.
At x=3,

At x=4,

At x=5,

The area of under the curve is





Therefore, the area under the curve 11.968 square units.