Answer:
![y=-3x^2+12x-19](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h4lmrwppyxqqoinw6fmns293ujg6ufni8h.png)
Explanation:
we know that
The quadratic equation in standard form is equal to
![y=ax^(2) +bx+c](https://img.qammunity.org/2020/formulas/mathematics/high-school/169cnr250167ro0kovoll9jl7jswracc4w.png)
we have
![y=-3(x-2)^(2)-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kti0xf0397b2a3t6vzz3z57l4u9q5dd98u.png)
This is a quadratic equation in vertex form
Convert to standard form
![y=-3(x^2-4x+4)-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z3oak82whyeq4gwao14x0sgcpnxmezwpdm.png)
Apply distributive property
![y=-3x^2+12x-12-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lnoiwujhvtfatm2xs52yzmyvh5ebudqdfx.png)
Combine like terms
----> quadratic equation in standard form