164k views
3 votes
How many seconds did the sparkles stay in the air? f(x)=81-x^2

1 Answer

2 votes

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

Select a few

x

x

values, and plug them into the equation to find the corresponding

y

y

values. The

x

x

values should be selected around the vertex.

Tap for more steps...

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

Graph the parabola using its properties and the selected points.

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

f

(

x

)

=

8

1

x

2

?

?

f(x)=81-x2??

f

(

x

)

=

81

x

2

x

?

f(x)=81-x2x?

f

(

x

)

=

81

x

2

x

2

?

f(x)=81-x2x2?

f

(

x

)

=

81

x

2

x

3

?

f(x)=81-x2x3?

(

)

|

[

]

π

7

8

9

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

Select a few

x

x

values, and plug them into the equation to find the corresponding

y

y

values. The

x

x

values should be selected around the vertex.

Tap for more steps...

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

Graph the parabola using its properties and the selected points.

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

f

(

x

)

=

8

1

x

2

?

?

f(x)=81-x2??

f

(

x

)

=

81

x

2

x

?

f(x)=81-x2x?

f

(

x

)

=

81

x

2

x

2

?

f(x)=81-x2x2?

f

(

x

)

=

81

x

2

x

3

?

f(x)=81-x2x3?

(

)

|

[

]

π

7

8

9

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

Select a few

x

x

values, and plug them into the equation to find the corresponding

y

y

values. The

x

x

values should be selected around the vertex.

Tap for more steps...

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

Graph the parabola using its properties and the selected points.

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

f

(

x

)

=

8

1

x

2

?

?

f(x)=81-x2??

f

(

x

)

=

81

x

2

x

?

f(x)=81-x2x?

f

(

x

)

=

81

x

2

x

2

?

f(x)=81-x2x2?

f

(

x

)

=

81

x

2

x

3

?

f(x)=81-x2x3?

(

)

|

[

]

π

7

8

9

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

Select a few

x

x

values, and plug them into the equation to find the corresponding

y

y

values. The

x

x

values should be selected around the vertex.

Tap for more steps...

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

Graph the parabola using its properties and the selected points.

Direction: Opens Down

Vertex:

(

0

,

81

)

(0,81)

Focus:

(

0

,

323

4

)

(0,3234)

Axis of Symmetry:

x

=

0

x=0

Directrix:

y

=

325

4

y=3254

x

y

2

77

1

80

0

81

1

80

2

77

xy-277-180081180277

f

(

x

)

=

8

1

x

2

?

?

f(x)=81-x2??

f

(

x

)

=

81

x

2

x

?

f(x)=81-x2x?

f

(

x

)

=

81

x

2

x

2

?

f(x)=81-x2x2?

f

(

x

)

=

81

x

2

x

3

?

f(x)=81-x2x3?

(

)

|

[

]

π

7

8

9

vvvvv

User Kirtan
by
8.1k points